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A general method is presented for obtaining the electrostatic contributions to the first-, 
second- , and third-order Brugger-type elastic constants of metallic and ionic structures . The 
elec trostatic energy per unit initial volume of a homogeneously deformed lattice is determined 
by the Ewald-Fuchs method . General equations for the Brugger elastic constants are found 
by taking Lagrangian strain derivatives of this energy expression. Internal-strain contributions, 
which occur for nonprimitive structures, have been included. Results are tabulated for six 
metallic and five ionic structures. 

I. INTRODUCTION 

Electrostatic contributions can be an important 
part of any model calculation of elastic constants. 
Since these contributions are constant for a given 
structure, it seems appropriate to calculate and 
tabulate them for various ionic and metallic struc­
tures . General expressions, which are valid for 
any crystalline structure, are presented for the 
electrostatic contribution to the Brugger-type 
elastic constants. Also given are general ex­
pressions for electrostatic internal-strain deriva­
tives, from which the internal-strain contribu­
tion to the Brugger- type elastic constants can be 
obtained. SpeCific results are tabulated for six 
metallic and five ionic structures. Whereas some 

of these tabulated results have been reported 
elsewhere, this paper serves to increase the ac­
curacy of earlier work, as well as unify all re­
sults. 

For metallic structures, the first important 
results were those of Fuchs. 1,2 He calculated the 
two Fuchs-type second-order elastic shear con­
stants for bcc and fcc metals. By extending 
Fuchs's method, Cous ins 3 obtained the second­
and third-order shear constants for bcc and fcc 
metals. More recently, Cousins4,5 calculated the 
first-, second-, and third-order elastic con­
stants of hcp metals for various c/ a ratios. In­
stead of calculating the Fuchs- type elastic con­
stants, which are linear combinations of the Brug­
ger elastic constants, Suzuki et al. 6 directly cal-
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culated the electrostatic contributions to the 
second- and third-order Brugger elastic constants 
of bcc metals. For ionic structures, Ghate 7 has 
calculated the electrostatic contributions to the 
third-order Brugger elastic constants for NaCl­
and CsCl-type structures, and Blackman8 has 
calculated the second-order electrostatic contri­
butions, including internal strains, for the zinc­
blende structure. In addition to a recalculation 
of the results cited above, the new results tabu­
lated in this paper are the first-, second-, and 
third-order elastic constants of the wurtzite, 
WC-type, diamond, simple cubic, and simple 
hexagonal structures; the third-order elastic 
constants of zinc blende; and the internal-strain 
derivatives, through third order, for the zinc­
blende, diamond, hcp, WC-type, and wurtzite 
structures. 

The Ewald- Fuchs method for determining the 
electrostatic energy will be discussed in Sec. n. 
General expressions9 for the Brugger-type elas­
tic constants and tabular results will be presented 
in Sec. ill. An explanation of internal strains and 
their contributions to the elastic constants will 
follow in Sec. IV. 

II. EWALD-FUCHS METHOD 

The electrostatic energy, per unit initial vol­
ume, of a homogeneously deformed lattice of ions 
is 

(1 ) 

no is the volume per ion of the undeformed state, 
e the electronic charge, and s the number of ions 
per unit cell. The summations over 1 and v, J1. 
(v, /J. = 0,1, ••. ,s - 1) are sums over the Bravais 
lattice and unit cell, respectively. The prime on 
the summation means the l= 0, v = /J. term is ex­
cluded from the sum. R(~!) is defined as 

where R(l) is a Bravais lattice vector and T(V) is 
the basis vector of the vth ion in the unit cell. 
Throughout this paper, primed quantities, such 
as R'(~~), will refer to the deformed state. 11 v 

is the sign of the ionic charge, i. e ., the charge 
of the vth ion is lJvZe. The parameter A is in­
troduced in Eq. (1) to make the summand di­
mensionless. Different choices for the value of 
A will be discussed later. 

For a given crystal structure the summation in 
Eq. (1) can be readily performed, but the con­
vergence is extremely slow. A useful technique 
for more rapid convergence is the method orig­
inally devised by Ewald10 for ionic lattices and 
extended to metals by Fuchs. 11 The follOwing is 

a brief description of the Ewald-Fuchs method. 
Using the definition of the r function, one has 

By splitting the integral into two parts, one from ° to rru and the other from rru to 00, it follows 
that 

+J" dtt-1/2 [F exp(-rrlft~~~~)12t) -OVI'] , 

o 

where 
(4) 

(5) 

The 9-function transformation for a (Bravais) de­
formed lattice is 

,6 exp [- rrlft'(ll+xI 2y2] 
I 

y-3 _, _ (_ IG'(h)1 2 
) 

= --, 6 exp[- iG (h). x] exp 4 2 , 
s~ h ~ 

(6 ) 

where the G'(h) vectors form the reciprocallat­
tice of the deformed real lattice and n~ is the 
volume per ion of the deformed state. Using this 
transformation and defining a structure factor as 

S'(G') = (1/ s) 6vlJ v e-1G"" (V) , (7) 

it can be shown that 

2 2 ' [ -, /0 Z 
U' -~ lIz 1. 6'11 lJ <I> (urrlR (vl')1 ) 1I- ,2n A u, s v ' I' -l/Z ,2 

, 0 Ivl' ~ 

+u-1 ~~~' IS'(G'(h)) IZ <I>oC
2

1!;h)I
Z 

) 

- 2u1/Z (112) + u-1 f (11)2 DJ, (8) 

where 

(112) = (l/S)6 v lie, (11) = (1 / S)6vll ,v ', 

and 

D= t dtt-2 o . 

It should be noted that, owing to the integral D, 
U~i diverges unless the average charge per unit 
cell (11) is zero. For ionic structures this is the 
case, and U~i by itself represents the electro­
static energy density. For metallic structures 
(11)*0, and U~i is' divergent. However, the elec­
trostatic energy density of metals consists not 
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only of U:\, but also of ion- electron and electron­
electron interactions, to be denoted by U:e and 
U~., respectively. For a metal, the jellium 
model (a lattice of positive point ions embedded 
in a uniform sea of electrons) will be used here. 
This is the model used for the electrostatic en­
ergy in the pseudopotential theory of metals. 12 
Denoting the uniform electron density by no 
= Z (3)/ n o, it follows that 

, , Ze2 1 
U\e+Uee=- ,no -N 

"'.. S cell 

X L: 3 .. J d3 x' n~ A 
• I X' - It' (!. ) I III 0' .. 

+ ~ __ 1_ f d3y '1 d3x' (n~)2 A 
2Ano SNcell n' n' I Y' - X' I ' 

(9) 

where Ncell is the number of unit cells. Changing 
variables of integration leads to U:. = - 2U~. , 
and then using the r-function definition, it fol­
lows that l3 

, , , Z2 e2 
-I ( A

3
) 2 

U\e+U.e=-Uee =- 2Ano a n~ (3) (1+D). 

(10) 

Thus, the electrostatic energy density U~s for 
both metallic and ionic structures may be written 

U' - Z2 e2 [ 1/2! 6' <I> (a1TIR'(~~)12) 
es- 2n A a 'b v 'b .. -1/2 ,2 

o S 'v.. '" 

(11) _2a l
/
2 (3 2)_a-1 ~~ ('b)2J 

remembering that (1J) = 0 for ionic structures. The 
parameter a is a convergence parameter and is 
usually chosen so that the real-lattice and recip­
rocal-lattice sums converge at about the same rate. 
However, results are independent of the choice for 
a. 

There are two choices for the parameter A which 
are of particular interest here. For A= (n~)1/3, 
all the strained-volume dependence of U~. is con­
tained in the (1 / n~)1/3 factor outside of the square 
bracket in Eq. (11), and the square bracket con­
tains only volume- conserving shear dependence. 
This choice is convenient for taking Fuchs-type 
strain derivatives of U;s. The second choice, and 
the one to be used throughout this paper, is 
A = (no)I/3. This choice is convenient for differen­
tiating U~s with respect to the Lagrangian strain pa­
rameters, 

(12) 

where repeated indices are to be summed and oiJ 
is the Kronecker 0. The transformation coeffi­
cients are given by 

ax; 
J ij = ax- ' 

j 

(13) 

where x and x' are the position vectors of a mate­
rial particle in the initial and deformed states, re­
spectively. Derivatives of U~s with respect to 
T}lj give directly the electrostatic contributions to 
the Brugger-type elastic constants, which will be 
discussed in Sec. m. 

By performing the appropriate lattice and 
reciprocal-lattice sums in Eq. (11), the electro­
static energy for any given metallic or ionic struc­
ture can be obtained. For metallic structures, 
the electrostatic energy per ion is usually written 
in the form 

Ees(Per ion)= no U.s = a.(z:e
2 

)=ao(~::2) , (14) 

where a is the lattice constant and ro is the radius 
of the ionic sphere, given by -t 1Trg = no. Similarly 
for ionic structures, the electrostatic energy per 
molecule is written 

(
Z

2
e

2
) Ees (per molecule)= 2no U es = a. -a-

(15) 

where R is the nearest-neighbor distance. The a 
coefficients entering in Eqs. (14) and (15) are 
known as geometriC coefficients when referring to 
metals, and as Madelung constants when referring 
to ionic structures. We have evaluated these co­
efficients for six metallic and five ionic structures 
and have listed the results in Table 1. For those 
structures involving a c/ a ratio, the evaluations 
were performed for the case of ideal close packing 
of spheres, i. e., c/ a = 1 for the simple hexagonal 
structure, and c/ a = Jf for the hcp and WC- type 
structures. For the wurtzite structure, c/a= If 
and u = i, which gives equal bond lengths and bond 
angles. 

III. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC 
CONSTANTS 

Having determined the electrostatic energy den­
sity of a deformed lattice, one can now calculate 
the electrostatic contributions to the elastic con­
stants by the method of homogeneous deformation. 
Since internal- strain effects may be treated sep­
arately (see Appendix A), here we will only con­
sider the case of zero internal strain, i. e. , ~ = O. 
Internal- strain contributions to the elastic con­
stants will be treated in Sec. IV. The Lagrangian 
strain derivatives of U;s can be easily performed 
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(see Appendix B), thus yielding the electrostatic 
Brugger elastic constants 

C es = 8 U'es 7], W = 0) "( n • (- - ) 

IJkl'" - 87]IJ 87]kl • • • ii =0 • 
(16) 

Introducing the dimensionless parameters r = H( ~~)/ 
0 0

1/3 and g=05/3G(h)/ 27T, the expressions for the 
first-, second-, and third-order elastic constants 
are 

+ ao1 ~' 1 S(g) 12 [XIJ ~O (a o1 7T Ig 12) - (27Ta o1 )glgJ ~+1 (ao1 7T Igl2)] - ao1 (~)2 Xli} (17) 
h 

Z2 e2 , 
C:ikl = zs:iU3{a1/2 (l/s) ~ ~ .1I1'(27Taj2rlrJrkr, ~+3/2 (a7TIrI2) +aol~ ' IS(g)12 [Aim ~0(ao17TIgI2) 

o '.1' h 

and 

where 

XIJ=OIJ' (20) 

Xlikl=OIJOkl+OlkOn+OIlOJk, (21) 

Y iJkl = glg/Okl + gkg,Oj} + gigk 0JI 

+OlmXkIJ.+OI.XkIJm, (23) 

Y'Jklmn = g, gJXklmn + g, gk X Jlmn + g,g, X Jkmn +g, gmXklJn 

and 

+ gi g.XklJm + gJ gk X llmn + gJg, X'kmn+ gJgmXkI'n 

+ gJ gnXkllm + gkg,XfJmn +gkgmX'Jln +gkgnX'Jlm 

+glgmXljkn+g,gnXljkm+gmgnXiJkI' (24) 

ZlJk/mn= gi gJ (Yklmn - gkg,Omn) +gkg, (Ymn'J - gmg. 0iJ) 

+ gmgn (YiJk 1-g, gJ 0kl). (25) 

It is easily seen that the coefficients X iJ ... , 

Y'Jkl".' and Z IJklmn' and thus the elastic constants 
C~:. .. , satisfy Cauchy relations, 1. e., the order­
ing of the subscripts is immaterial. Therefore, 
in general, all tl e elastic constants (through third 
order) can be obtained from only two types of first­
order constants C;; and C~~; four types of second­
order constants C;; H, C;; JJ> C~~JK' and C~; J K ; 

and seven types of third-order constants C~;J1II' 

C~;I1JJ' C~;JJKK' C~~TJJJK' C~·JJKKK' C;:IIJK, 
and C~: JJ JK, where the subscripts run from 1 to 3 
with UJ#-K. For these types, the elastic con­
stants with Cauchy relations have been listed in 
Table II. In that table, as well as the remainder 
of this paper, Voigt (reduced) notation is used for 
the subscripts whenever referring to specific 

TABLE I. Geometric coefficients for six metallic 
structures and Madelung constants for five ionic struc­
tures. For metals, the electrostatic energy per ion is 
o a(Z2e2/a ) = 00(Z2e2/2ro), where a is the lattice constant 
and ro is the radius of the ionic sphere. For the ionic 
structures, the electrostatic energy per molecule is 
oa (Z2e2/a) = Q. R.(Z2e2/R ) , where R is the nearest-neighbor 
distance. 

Metallic O il 00 

simple cubic -1. 418 648 7397 -1. 760 ll8 8842 
fcc - 2.2924310371 -1. 7917472304 
bcc -1. 819 616 7248 -1. 791858 5114 
diamond - 2. 693 399 0221 - 1. 6708514055 
simple hexagon~ l -1. 4978559763 -1. 771389 4740 
hcp -1. 620 929 3075 -1. 791676 2409 

Ionic °a o R. 

NaCI type -3.4951291893 -1. 7475645946 
CsCI type - 2.035361 5095 -1. 762 6747731 
z inc blende - 3. 782 9261041 -1. 638 055 0534 
WC type -1. 235 585 6381 -1. 235 585 6381 
wurtzite - 2.6802669939 -1. 641321 6274 
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TABLE II. General Cauchy relations for first-. second-. and third-order elastic constants. Also listed are co­
efficients used in the general expressions for the elastic constants. 

Types 
ijklmn 

II 

JK 

IIII 

IIJJ 

JJJK 

IIJK 

l1IIII 

IIIIJJ 

IIJJKK 

JJJJJK 

JJJKKK 

IIIIJK 

"IIJJJK 

Elastic constants with Cauchy relations 
C iJ ... 

First order 

CI. C2• C3 

C 4• Cs• C6 

Second order 

Cu. C 22 • C 33 

CI2 =C66 • CI3 =Css • C2S =C44 

CIS. C16• C 24 • C 26 • CS4 ' C3S 

C14 =CS6 ' C2S =C46 • C 36 =C4S 

Third order 

CUI. C 222 • CS3S 

CU2 =CI66 • CU3 =CI55 • CI22 =C266 
CIS3 =C35S • C22S =C244 • C 233 =C344 

C 123 =C144 =C255 =CS66 =C456 

CU5 • CU6 • C 224 • C 226 • CSS4 ' CS35 

CI26 =C666 , CIS5 =C555 , C 234 =C 444 

CI14=CI56' C225=C246' C336=C345 

C 125 =CU6 =C566 • CI24 =C256 =C466 
CI34 =C356 =C455 • CU6 =CU5 =C556 
C 235 =C346 =C445 • C 236 =C245 =C446 

elastic constants. For convenience, the XjJ, .. , 

Y!}u ... , and ZfJklmn coefficients, which are used 
in Eqs. (17)-(19) to determine C~j. .. , have also 
been listed. 

Calculations have been completed for seven cubic 
structures, namely simple cubic, fcc, bcc, NaCI 
type, CsCI type, diamond, and zinc blende. The 
first-, second-, and third-order elastic constants 
with Cauchy relations for these structures are 

Cl ; Cu , Cl2 = C44 ; 

and 

CUl , CU2 = C155 ' CU3 = Cl44 = C456 • 

The electrostatic contributions to these constants 

1 

o 

3 

1 

o 
o 

15 

3 

1 

o 

o 
o 
o 

6g1 

gl+g'j 

3gJgK 

gJgK 

45gi 

6gi +3g'j 

g}+g'j +gl 

15gJgK 

9gJgK 

3gJgK 

3gJgK 

ZiJklmn 

15gJ 

g1+6gJg'j 

gj g'j + gigi + gigi 

1 o,rl gK 

3gJ gK(g'j+gi) 

6gjgJgK 

gJg[(3gi+rl) 

are listed in Table III in units of ZZ e2
/ a4

• where 
a is the lattice parameter. 

Four hexagonal structures, namely simple hex­
agonal, hcp, WC type, and wurtzite, have also been 
considered. For these structures, the elastic 
constants with Cauchy relations are 

Cl,CS; Cu , C33 , ClZ=C66=icu, Cl3 =CH ; 

and 

Cm = C266 = t (3C 111 - 2CZ22) , 

C333 , CU3 = Cl55 ' 

TABLE III. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z 2e2/a\ where a is 
the lattice constant. 

simple cubic fcc bcc NaCl type CsCl type diamond zinc blende 

U -1.418648740 - 9.169 724148 - 3. 639 233 450 -13.980516757 - 2. 035 361509 - 21. 547192177 -15.131704416 
CI 0.472 882 913 3.056574716 1. 213 077 817 4.660172 252 0.678453836 7.182397392 5.043901472 
CII -0.143189083 - 6. 849 873 626 - 2. 697 885 714 - 25.108 469175 2.125129382 - 23.345 777443 -4.053717061 
CI2 - O. 637 729 828 -1.159925261 - O. 470 673 868 5.563976209 - 2. 080 245446 0.899292633 - 5. 538993678 
CIII -1. 747 954 699 34.065579503 9.235126065 164.229593204 -16.226944863 119.055300863 17.207017149 
Cm 1. 231 950057 0.091894314 2.127151252 -19.343623664 2.800648978 -1.163206824 1.530784079 
C123 0.724749027 5.615837678 -1. 900 933165 10.867366283 4.799929272 - 2.170 049 518 24.633400 230 
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TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries 
are in units of Z 2e21a4• where a is the lattice constant. 

simple hexagonal hcp 
(cia = 1) (cia =./f-) 

U -1.729575102 - 2. 292340210 
Cl 0.533603351 O. 764635 593 
C3 0.662368399 0.763069024 
C11 - O. 605 973 676 -1.288353922 
C33 - O. 401414 892 -1.137003974 
CI2 - O. 201991225 -0.429451308 
CI3 - 0.792845153 - O. 576101549 
C111 2.324128642 5.026701204 
C 222 - O. 532 222 756 2.217541686 
C333 - 0.708777482 5.511268055 
CII2 -1.248985111 -0.680155470 
C122 1. 607 366 288 2.129004048 
C 113 1. 954 724 848 2 .095223879 
C 123 0.651574949 O. 698407 960 
Cl33 1. 357925970 0.086875908 

Electrostatic contributions to these elastic con­
stants for ideal structure parameters are listed in 
Table IV in units of Z 2e2 / a' . For all the hexagonal 
structures, our choice of Cartesian axes (in Mil­
ler-Bravais indices) has bee):l1 axis = [1010]; 2 
axis = [1210 ]; and 3 axis = [0001]. It should be 
mentioned that, for the hcp structure, Cousins5 

has chosen basal axes rotated 90 0 with respect 
to ours. Thus, his CU1 corresponds to our C222 , 

etc. However, our choice of axes is consistent 
with the only two sets of measured third-order 
elastic constants for hcp metals. 14 •15 Also the dif­
ferent choice of axes eliminates the discrepancy, 
noted by Naimon et al., 16 in certain Fuchs's con­
stants calculated by Cousins! 

The results presented in Tables III and IV rep­
resent a higher degree of accuracy than those of 
earlier calculations. However, our results are 
essentially in agreement with those reported ear­
lier (fcc, 1-3,9 bcc, 1-3,6,9 NaCl and CsCl,7 zinc 
blende,8 and hcp5). Also, all results were checked 
independently by doing a Fuchs -type calculation for 
each structure [Eq. (11) with >t= (n~)1/3]. Other 
useful checks are the relations 

where, as usual, repeated indices are to be sum­
med. These can be easily derived, for example, 
by relating Fuchs and Brugger constants. All 
calculations were performed on IBM 360 and 
Xerox Sigma 5 computers. Convergence of all 
sums was such that the maximum error in the 
tabulated constants was ± 1 x 10 -12. The subroutine 

WCt~ wurtzite 
(cla=jf) (cla=Jf. u=i 

- 0.873690 983 -3.790469934 
-0.577163952 1. 237266468 

2.028018888 1. 315 936 998 
2. 966252428 - 2. 637 875499 

-1. 637033899 - 3. 558 546 850 
0.988750809 - O. 879 291833 

- 2. 223 511382 -0.194632072 
-15.767553741 12.580565280 
-19.362925160 2.779206544 

2.608789547 26.442451932 
- 5. 310 733 599 - 3. 364 702185 
-1. 715 362181 6.436 656 550 

6.247025199 3.973514399 
2.082341733 1. 324 504 800 
2.788189975 - 4. 324858 840 

for the complementary error function, necessary 
to generate the <I? -11 2 functions, was from an IBM 
routine with a relative error of less than 4 x 10-16 . 

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN 
DERIV ATIVES 

In order to obtain the internal-strain contribu­
tion to the elastic constants, it is sufficient to 
know the energy density of the homogeneously de­
formed lattice as a function of both external and 
internal strains (see Appendix A). However, since 
the internal strains are determined from the total 
energy denSity, the electrostatic internal-strain 
contribution -to the elastic constants cannot be ob­
tained directly. It is still possible, though, to de­
termine electrostatic internal-strain derivatives 
of the form 

(26) 

where W(lI) is the internal strain associated with 
the lith ion of the unit ccll (lI= 0, 1"", s -1). 
These derivatives would be combined with those 
ariSing from other terms of the energy density, 
thus resulting in the total internal-strain contri­
bution to the elastic constants. 

Using the method of homogeneous deformation, 
,derivatives of U;.(Ti, ~(v)) can be easily performed 
(see Appendix B). IntrodUCing the dimensionless 
parameter t = [T(V)- T(Jl)l!n~/3, as well as 
r = R(~~)/ n~/3 and g= n~/3G(h)/ 21T, the expressions 
for the electrostatic internal-strain derivatives 
through third-order are 
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(27) 

(28) 

-u2:;' [ReK(g,ZI)-;/)v / s ] (21TU-1)2 gpgq<PO(U- I 1TlgI2)}, (29) 
h 

n~ 13 u(vJ»{l'q) = ng/3 U(I'P)(Vq
)= -:~~~Z3 2;/);;/) I' {u1/2 ~ [(21TU)2 r p r q <P +3/2 (U1T I r 12 ) - (21TU) Opq <P +112 (U1T I r 12)] 

- (21TU )(Op! Oql + Opj Oql) <P +1/ 2 (U1T I r 12)] - U· I:' (ReK(g, ZI) - ;/) v / s) 
h . 

X [(21TU-1)Z(Ypql}- Opqglgj)<PO(U- I 1TlgI2) - (21TU-l)3gpgqglgj<Pl(U-I1TlgI2)]) , (32) 

n Z/3 U(vP)(l'q) _ nZ/3 U(I'P) (Vq) _ ZZ e
Z 

2;/) v;/) I' {U1/2 ~ [(21TU)3 r r r r <P (U1T \ r IZ) 
··0 Ij - ··0 I} - 2n~ 7 3 S 7' p q I j +5/z 

- (21TU)Z Opqrl rj <P+3/z(U1TI-r1 2
)- (21TU)(Opl Oqj + Opj Oql)<P+1/2 (u1T1 rI2)] 

- U 2:;' (l/s) cos (21Tg • t)[(21TU-1)2 (Ypolj _ Opqglgj)<PO(U- I 1T\gI2)- (21TU- I )3 gpgqglgj<P I (a- l 1T IgI2)]} , 
h 

(33) 

n U(vP) (vq) (vm) -Z
2

e
2 

2;/)v { lIz'" .. [(2 )3 ( 1-1 2) (2 )Z X ..... (1-1 2 )] 
•• 0 = 2ni734 3 - a L.J 01' 1Ta rprqrm<P+5/2 a1T r - 1Ta rn npom"'+3/2 a1T r 

no s 11"*_ 

- a2 2:;' ImK(g, ZI)(21Ta- I )3 gpgqgm <p o(a-l 1T I g 12)} , (34) 
h 

n U(vP)(vO)(l'm)_ n U(I'J»(,.q)(vm) _ Z
Z

e
2 2~_bl' {1/22:; [(2)3 <P (I-IZ) 

•• 0 --··0 -WF s a I 1Ta rprqrm +5/2 a1T r , 

and 

where ZI *- IJ. *-~ and 

K(G, ZI) = S(G) eIG'T(V) (37) 

These internal-strain derivatives are similar to 
elastic constants in that they transform as tensors 

(36) 

for any point -group operation (e. g., U ij>* 
=<RPo<Rik<RJI U ~~o), where (R is a point-group sym­
metryelement). However, for those space-group 
operations which contain a rigid translation, e. g. , 
screw axes or glide planes, the unit-cell label ZI 
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also may change. An important consequence of 
this is that Ui<'j> , and thus the internal-strain 
parameter 

need not have the same symmetry as the piezoelec­
tric tensor. An example of this is seen later when 
considering the wurtzite structure. Also, it is 
easily seen that these electrostatic derivatives 
obey the following relations: Uj<t>, U<II/J){JJq), 
U ~'1'k" and U <vt>)(lJ.q) <lm) satisfy Cauchy relations 
in that the Cartesian indices can be arranged in 
any order (e g U <I'/» = U <vi)). and U <vt>l<lJ.q) is . • , if PI' iJ 

symmetric with respect to the interchanges p-q 
and i- j. 

Because the energy denSity depends on relative 
interlattice dis~lacements, only s - 1 of the s in­
ternal strains w(l)) are independent. 17 Thus, one 
may choose any independent set of internal strains 
~a (O! = 1, ... , s -1), which are linear combinations 
of the ~(I)), 

Then, derivatives are related by 

a ~ a 
a W (I)) = ;:1 aav a wa • 

Internal strains only occur in nonprimitive lat­
tices with ions not at centers of symmetry. Thus, 
of the 11 structures considered earlier, only five 
(diamond, zinc blende, hcp, WC, and wurtzite) 
can have an internal-strain contribution to the 
elastic constants. Because the diamond and zinc­
blende lattices differ only in the sign of the ionic 
charges, they may be considered together. The 
same applies for the hcp and WC lattices. How­
ever, since the wurtzite structure consists of two 
interpenetrating hcp sublattices, the hcp and WC 
structures can be obtained from wurtzite by a 
suitable choice of charges. Thus, it is convenient 
to consider hcp and WC with wurtzite. 

The zinc-blende and diamond structures have a 
fcc Bravais lattice with basis vectors ;(0) = (0, 0,0) 
and ;(1) = (ta)(l, 1, 1). To form the two structures, 
the signs of the charges in the unit cell are chosen 
as ~ 0 = + 1 and ~ 1 = - 1(+ 1) for the ionic zinc -blende 
(metallic diamond) structure. For structures with 
two ions per unit cell, there is only one indepen­
dent internal strain. Here it has been chosen as 

and thus 

Then, the independent electrostatic internal-strain 
derivatives for zinc blende with Cauchy relations 
are 

ul = -10. 057668147, U~1 = o. 819616921, 

U ll = - 4.188790205, U~1 = 10. 062167052, 

U I23 = 19. 202879707, U~3 = 14.250957256, 

U~4 = U~4 = U~6 = 16. 762780245 , 

in units of Z 2e2/a4
• (The notation used here is that 

of Appendix A, with Voigt notation used for all 
subscripts.) Since the electrostatic internal-strain 
derivatives are proportional to 30 ~1 for structures 
with two ions per unit cell, the results for the I 

diamond structure are negative those of zinc 
blende. 

The hcp, WC, and wurtzite structures have a 
simple hexagonal Bravais lattice with basis vec­
tors 

;(0) = (0, 0, 0), T(l) = (al/3, 0, %c) , 

;(2)= (0, 0, uc), ;(3)= (a/.f3, 0, [u+%] c) 

referred to the Cartesian axes. The three struc­
tures can be formed by chOOSing the signs of the 
charges in the unit cell as follows: For metallic 
hcp (ionic WC)h=+l, h=+l(-l), and h=~3=0; 
and for ionic wurtzite ~o = ~1 = + 1 and ~2 = ~3 = - 1. 
The three independent internal strains will be 
taken as 

Wi = [W(I) - W(O)]/ L, W2 = [W(3) -W(2)]/L, 

and 

Ws= [~(2) - w(O))/L , 

where L = %a 13. The internal strains ~I and ~2 
represent the inter lattice displacement in the two 
hcp sublattices, while ~3 is an interlattice dis­
placement between the two hcp sublattices. Then, 
internal-strain derivatives are taken according to 

a~~ = ~aw:(l)' ~ = L(aW:(3)) 
and 

It is easily seen that derivatives with respect to ~2 
and ~3 are zero for hcp and WC, since internal­
strain derivatives with respect to ~(I)) are propor­
tional to a:v • Therefore, for these two structures, 
the internal-strain label will be omitted and under­
stood to be Q = 1. The electrostatic internal-strain 
derivatives for ideal hcp with Cauchy relations are 
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u~= O. 212757375 , 

Ull = O. 215120910 , 

U33 = 4.282147161 , 

Ull1 = - 1. 206443870 , 

U~I = O. 014231968 , 

U~I = O. 148157929 , 

U~I = - 1. 237994447 , 

U~s= - 5. 305020698, 

U~s = - 10. 800694409 , 

U~3 = - 5. 520141607 , 

U~2 = t(UP - U~l) = - O. 066962980 , 

U~I = 0.010837123 , 

U~2 = U~6 = - t U~l = - O. 006502274 , 

U~2 = U~6 = - t U~I = - O. 002167425 , 

Ut3= - Ui4= U~5= -1. 072456573 , 

in units of Z2e 2/ a4. As was the case for the dia­
mond and zinc-blende structures, the results for 
the WC-type structure are negative those of hcp. 

For the wurtzite structure , all three internal 
strains must be considered. Instead of using the 
internal-strain labels cr, (3, •.. on Uff.Bt;.··· when 
writing specific derivatives, it is convenient to 
use commas to separate differentiations with re­
spect to the three different internal strains . Then 

uP.::' .•... ,m ... =( anU~s ) . 
iJ awl, •• aw2 , .. aw3 ,. ·81'1 .... - 0 =~-o p q m ", j 17'= , w .... -

The indices before the first comma represent de­
rivatives with respect to Cartesian components of 
iU I; those between commas represent derivatives 
with respect to components of iU2; and those after 
the second comma represent derivatives with re­
spect to components of iUs. For example, 

and 

Then, the electrostatic internal-strain derivatives 
for ideal wurtzite with Cauchy relations are 

U,,3 = _ 2 Us" = 2U,3, = - O. 048542322 , 

= Ui ,3 = - 2 U~" = 2 Uis, = 3. 425042335 , 

U3,3= - 2 ifs" = 2U;3,= - 6.704457705 , 

ul" = Ui l , = - 2. 335388332 , 

U' ,11 = _ 2 UI , ,I = 2 U,I,I = - 6. 130547391 , 

Ull " = U,I1, = _ 2.850152786 , UI ,I, = -1. 129619894, 

U,,33 = _ 2 U3,,3 = 2 U,S,S = - 6. 588461139 , 

£.Is" = U, 33, = 0.987916591 , US,3, = 6.971628768 , 

= - 2 Us"ss= 2 U,S,33 = _ 2 U"l1S= 4 U113 " 

= _ 4 U,113, = _ 4 Ull ,,3 = _ 4 U1S ,,1 = _ 4 U,l1,3 

= _ 4 U,13,1 = 4 U3, ,11 = 4 U1,,13 = _ 4 U,3,11 

= - 4 U,I,IS= 79.550922034 , 

U33 ,3, = _ U3,3S, = _ US,3,3 = _ 2 UI1 ,s, = _ 2 UI3 ,I, 

= 2 uS,l1, = 2 UI ,lS, = 2 UI ,l,S= 2 uS' 1,1 

= 2 UI ,3,1 = 13. 883995989 , 

Ulll " = U,l1l, = 27. 750835335 , 

Ull "l= _ U,l1,l= _ UI "l1 = _ U,I,l1= _ 28.957279205, 

Up" = Ui l1 , = 14. 882310616, Ut,l, = O. 659437674 , 

Ur l1 = - 2 Ut,,1 = 2 Ui l ,l = 29. 736157294 , 

U~I" = U211 , = 3. 060668348, U~,l, = - 0.533267371 , 

U2,l1 = - 2 U~"I = 2 Uil,l = 5. 825020837 , 

U~I" = U;l1, = - 3. 692215035 , U~,I, = 5. 521929167 , 

Ur ll = - 2 U~"I = 2 U;l,l = - 4.908441176 , 

U~3" = Uis3 , = _ 7. 530284412, U~,s, = - 2. 579319495 , 

ur33 = _ 2 U~"s= 2 Ui 3,3= - 4.450527428, 

MS" = U;ss, = 10. 120985868, U~,3, = - 29. 699504851 , 

ur33 = _ 2 U~,,3= 2 U;3,S= 41. 843360553, 

U~3" = U423 , = - 4. 680131626 , 

U~,3, = U:,2, = - 1. 449699601 , 

U~2" = U6
12, = t(Ui l " - U~I,,)= 5. 910821134 , 

U~,2, = U~,I, = t(Ut ,l, - U~,l,)= 0.596352523 , 

U6,12= - 2 U!,,2= _ 2 U~"I = 2 U;,I,2= 2 U6
2,1 

=t(Ui'll- U2'l1)= 11 . 955568228, 

= _ ui,,3 = - U~ .. l = _ Ui l ,3 = - Ui3,1 = 6. 812479538 , 

Uti' = ud' = 13.899872705 , 

U~2' = U2~' = U~6' = U2~' = - t Uii' = - 8. 339923623 , 

uir = Ui~' = ufr = Ui~' = - t uti' = - 2. 779974541 , 

ut;, = ud' = - uir = - u 4i' = U~5' = Ui~' = O. 557043495 , 

= UH3 = - 2 U~i' = 2 Ui~' = - 12. 050251035 , 

U2I;1 = - 2 U~5' = 2 U2~' = U4f/ = - 2 uir = 2 U4~' 
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= 2 U6~' = t UB1 = - .4.016750345 , 

= - 2Ulr = 2U'~· = - 1. 058210294 , 

USS3 = - 2U~3' = 2U3~' = 35. 638709114 

in units of Z2e2/ a4. 
The space group of wurtzite contains a screw 

axis (a twofold rotation about the three axis and a 
translation by tc). For this symmetry element, 
the internal-strain tensors ul~~~:" transform as 

Ul~!:··*=<Rpq···<RIR<RJI··· U~'t!.): .. , 

where af is the twofold rotation matrix. As a re­
sult of the translation, the unit-cell labels (11- v) 
change according to 0-1,1-0,2- 3, and 3-2. 
For example, this symmetry requires that 

U~01l=_U~11l and U~21l=_U~31) • 

Thus, U}" '" L U~11l and Ui 1. '" Lu~31l are not required 
to vanish. However, Ur 1 '" L [U~ 21 \ U~ 31 ~ is required 
to be zero. It should be noted that if the componentE 
of a tensor are unaffected by the translation, then 
any component with an odd number of l's or 2's, 
but not both, is required to vanish (e. g. , the 111 
component of the piezoelectric tensor). 
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APPENDIX A: INTERNAL-STRAIN CONTRIBUTION TO 
BRUGGER-TYPE ELASTIC CONSTANTS 

For nonprimitive lattices with ions not at cen-
ters of symmetry, macroscopic strains in general 
give rise to internal strains, i. e. , inter lattice dis­
placements. With s ions per unit cell, only s -1 
internal strains are independent. 17 For convenience, 
they will be labeled here as $"', where Q= 1, 2, ... , 
s - 1. These internal strains, which are functions 
of the external strain T/ iJ' are determined by re­
quiring that the total energy density of the homo­
geneously deformed state, u(Ti, W"'), be a minimum 
with respect to w"', i. e., 

(a~~ ) ~ = 0 (p = I , 2,3) . (AI) . 

Denoting derivatives of u(Ti, Wa
) by 

Uapllq'" (-) -
iikl'" T/ = 

(A2) 

the strain dependence of $'" can be determined by 
differentiating Eq. (A1) with respect to T/iJ' Thus, 

a au a aw'" 
0 = -- -=a = -- (rflq

) = rItJ +.:..::....L uaPIlq (A3) 
aT/ Ii aw q aT/ Ii aT/ Ii 

and 

a2 
r& r& aw'" U'1p(lq aw: U'1.p(lq 

0 = aT/ljaT/kl (u-) = Uljkl + aT/:I Ii + aT/iJ 101 

+ aw: aw~ U"'p(lq'Y1' + aZW: u",p(lq (A4) 
aT/IJ aT/kl aT/IJaT/k 1 

where repeated indices (including superscripts) are 
to be summed. 

In general, w: can be expanded in a Taylor series 

of T/IJ ' 

(A5) 

where the coefficients 

(A6) 

and 

B:iJkl ", (a 2 w: ) 
aT/ IJ aT/k 1 'il =0 

(A7) 

are determined from Eqs. (A3) and (A4), respec­
tively. Higher-order coefficients are Similarly ob­
tained by successive differentiation. However, 
knowing U as a function of W'" and71, only the in­
ternal-strain parameters A~IJ are needed to obtain 
B:IJkl and all higher-order coeffiCients, e. g., Eq. 
(A4) relates B;IJkl to the coefficients A:IJ and de­
rivatives of U. 

Using the definition of the Brugger elastic con­
stants, 18 

and Eqs. (AI), (A3), and (A4), it follows that 

Cij =cW , 

C iJU = C :~~ I -A;iJA:kl U",P(lq(Ti = 0) , 

and 

where 

(A8) 

(A9) 

(AIO) 

(All ) 

(AI2) 
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Thus, the internal-strain contributions to the elastic 
constants can be considered separately, and the 
C lJ~, ... are the Brugger elastic constants in the ab­
sence of internal strains. 

To illustrate the use of these equations, specific. 
results for several structures are given below. 
VOigt (reduced) notation is used for all subscripts. 
Also, for those structures with two ions per unit cell 
and thus only one independent internal strain, the 
superscript Q = 1 is omitted. 

For the zinc-blende (or diamond) structure, Eqs. 
(A1D) and (All) reduce to 

Cll = C!~), CI2 = C:~), C44 = C~~) - Ull A2 ; 

ClII = c!?L C1I2 = c!~L Cl23 = c!~~ , 

CI44 = c!~~ - 2U)4A + uti A2 , 

CI55 = Cm-2U~4A + U~IA2 , 

c456 = C~~~-3U§6A + 3~3A2- U 123 A 3 , 

where the internal- strain parameter, as de­
termined from Eq. (A3) is 

I - - -

A = Ul41 =_ ~ = _ aw2 = - ~ 
U 87]23 87]13 87]12 

The results for the hcp (or WC) structure are 

ClI = C!~)-UI1A2, CI2 = C!~) + UllA2, 

ClII = Cm + 3U)IA + 3Ut1 A2 + U lll A 3 , 

C1l2 =Cm- (2Utl + U~2)A- (2Utl- U~I)A2_ U11l A 3 , 

C222 = C~~- 3U~2A + 3U~1 A2_ U ll1 A 3 , 

CII3 = Cm + 2Ut3A + U~I A2 , 

C 123 = Cm - 2Ut3A - U~1 A2 , 

C144 = C!~~ + U!4A, C 155 = C!~~ - U!4A , 

where 

A = - 4 _ aWl = _ awl oW2 
u - 07]11 07]22 07]12 

For the wurtzite structure, which has three in­
dependent internal strains, complete results will 
not be given . However, we will indicate how the 
internal-strain parameters are obtained from Eq . 
(A3) for this structure. Since Uapil<I is nonzero 
only if p=q, Eq . (A3) becomes 

).... Uapep A a _ TI!P L plj - - l Ij , 
a =1 

where there are no implied sums over repeated in­
dices. Then 

A;i j = - t ('U -1)BPa
p utf ' 

B=I 

APPENDIX B. METHOD OF HOMOGENEOUS 
DEFORMATION 

For a homogeneous deformation of a lattice, 
i. e., a deformation where the resulting structure 
remains a perfect lattice, the lattice vectors and 
basis vectors deform according to 

and 

7;(V) =Jjj 7j (V)+WI (v) , 

respectively. Or equivalently, 

R;(~)=JiiRj(~)+Wi (V) , 

(El) 

(B2) 

(B3) 

where ;(v) is the internal strain or interlattice 
displacement of the vth sublattice. As is commonly 
done, the internal-strain vector is redefined as17 

(B4) 

so that the strain energy is in a form invariant 
with respect to rigid rotations. Then the lattice vec­
tors R(~~) deform according to 

R:(~~)=JljR/~~)+(rl)JI Wj(Vj.L) , (B5) 

where 

(B6) 

Since the deformed reciprocal lattice is the recip­
rocallattice of the deformed real lattice, the re­
ciprocal-lattice vectors deform according to 

G;(h)= (rl)ll Gj(h) • 

Volumes deform according to 

n~ /no=detl JI . 

(B7) 

(B8) 

In the expression for U;3 [Eq. (11)] the onlJ 
variables which depend on deformation are 1 R' (~~ )1 2, 

IG'(h) 12
, n~, and S'(G' ), the last of which is a 

function of G' (h) .;" (v). Using the definition of the 
Langrangian strain parameter 7] Ij' it is easily 
shown that 

and 

1 H' (~~ )1 2 = M l j RI (~2 ) Rj(~~) + 2WI (v j.L) Ri (~2 ) 

+ ( M -l)ij WI (v j.L )wj (v j.L ) 

1 G'(h)12 = (M -1)lj GI (h) Gj(h) 

(B9) 

(B1D) 

G' (h) .;' (v ) = G(h) .; (v) + (M -I)jj WI (v ) Gj (h) , 

(Bll) 
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where 

(B12) 

Equ ations (B8)-(Bll) can readily be differentiated 

with respect to 1]kl by making use of the relations 

(B13) 

(B14) 

and 
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