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A general method is presented for obtaining the electrostatic contributions to the first-,

second-, and third-order Brugger-type elastic constants of metallic and ionic structures.

The

electrostatic energy per unit initial volume of a homogeneously deformed lattice is determined
by the Ewald—Fuchs method. General equations for the Brugger elastic constants are found
by taking Lagrangian strain derivatives of this energy expression. Internal-strain contributions,

which occur for nonprimitive structures, have been included. Results are tabulated for six

metallic and five ionic structures.

I. INTRODUCTION

Electrostatic contributions can be an important
part of any model calculation of elastic constants.
Since these contributions are constant for a given
structure, it seems appropriate to calculate and
tabulate them for various ionic and metallic struc-
tures. General expressions, which are valid for
any crystalline structure, are presented for the
electrostatic contribution to the Brugger-type
elastic constants. Also given are general ex-
pressions for electrostatic internal-strain deriva-
tives, from which the internal-strain contribu-
tion to the Brugger-type elastic constants can be
obtained. Specific results are tabulated for six
metallic and five ionic structures. Whereas some

of these tabulated results have been reported
elsewhere, this paper serves to increase the ac-
curacy of earlier work, as well as unify all re-
sults.

For metallic structures, the first important
results were those of Fuchs. " He calculated the
two Fuchs-type second-order elastic shear con-
stants for bce and fcc metals. By extending
Fuchs’s method, Cousins® obtained the second-
and third-order shear constants for bcc and fcc
metals. More recently, Cousins*'® calculated the
first-, second-, and third-order elastic con-
stants of hcp metals for various ¢/a ratios., In-
stead of calculating the Fuchs-type elastic con-
stants, which are linear combinations of the Brug-
ger elastic constants, Suzuki et al.® directly cal-
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culated the electrostatic contributions to the
second- and third-order Brugger elastic constants
of beec metals., For ionic structures, Ghate” has
calculated the electrostatic contributions to the
third-order Brugger elastic constants for NaCl-
and CsCl-type structures, and Blackman® has
calculated the second-order electrostatic contri-
butions, including internal strains, for the zinc-
blende structure. In addition to a recalculation
of the results cited above, the new results tabu-
lated in this paper are the first-, second-, and
third-order elastic constants of the wurtzite,
WC-type, diamond, simple cubic, and simple
hexagonal structures; the third-order elastic
constants of zinc blende; and the internal-strain
derivatives, through third order, for the zinc-
blende, diamond, hcp, WC-type, and wurtzite
structures.

The Ewald- Fuchs method for determining the
electrostatic energy will be discussed in Sec. II.
General expressions® for the Brugger-type elas-
tic constants and tabular results will be presented
in Sec. II, An explanation of internal strains and
their contributions to the elastic constants will
follow in Sec. IV.

II. EWALD-FUCHS METHOD

The electrostatic energy, per unit initial vol-
ume, of a homogeneously deformed lattice of ions

is
vioda) s 0w -

€, is the volume per ion of the undeformed state,
e the electronic charge, and s the number of ions
per unit cell. The summations over / and v,
(v, £=0,1,,,,,58—1)are sums over the Bravais
lattice and unit cell, respectively. The prime on
the summation means the /=0, v=p term is ex-
cluded from the sum. R(’%) is defined as

R(H)=R(})-R(%)=[RO)+Tw)]- [R&)+ F1)], (2)

where R(l) is a Bravais lattice vector and 7(v) is
the basis vector of the vth ion in the unit cell,
Throughout this paper, primed quantities, such
as R’(19), will refer to the deformed state. 3,
is the sign of the ionic charge, i.e., the charge
of the vth ion is 3,Ze. The parameter A is in-
troduced in Eq. (1) to make the summand di-
mensionless. Different choices for the value of
A will be discussed later,

For a given crystal structure the summation in
Eq. (1) can be readily performed, but the con-
vergence is extremely slow. A useful technique
for more rapid convergence is the method orig-
inally devised by Ewald!® for ionic lattices and
extended to metals by Fuchs.!! The following is
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a brief description of the Ewald—Fuchs method.
Using the definition of the I'" function, one has

1/x"=[1/T ()] [’ dit™te® 3)

By splitting the integral into two parts, one from
0 to 7o and the other from 7o to «, it follows
that

. I'R’I(IOHZ =1/2
z' IR"(“’ Z ( » )

1
2% &, (__‘"”ﬁ'(:z“’g)lz )
1

X

+j: dtt"’z[lz exp(—vrlﬁ;(:onzt) . 6”] ’_

4)

where

®,(x)= f: e (5)

The 6-function transformation for a (Bravais) de-
formed lattice is

7|R'(1)+%|%y?)

7 exp[-iG'(h)+X] exp (ia_'g;mz_)
Sﬂo h » 41’3’ ,
(6)
where the G'(k) vectors form the reciprocal lat-
tice of the deformed real lattice and £ is the
volume per ion of the deformed state, Using this
transformation and defining a structure factor as

sl('G’I)= (1/3)2“8” e-ia“?’ w) 3 (7)

it can be shown that
i 4 110\ 2
1 ’ omlR |
[0_1/3 ; Z ava“@q/a (—ZZL K( ) )
0 v

Azl('}"(h)lz)

4o

+o7t %—z %)' |S"(@' ()2 %(

3
-20'2(3%) 407t %;— (3)ZD] , (8)
0
where '

(3*)=(1/s) 23,32,

and
D=[dtt'2_

It should be noted that, owing to the integral D,
Uj, diverges unless the average charge per unit
cell (3) is zero. For ionic structures this is the
case, and U{; by itself represents the electro-
static energy density. For metallic structures
(3)#0, and U}, is divergent, However, the elec-
trostatic energy density of metals consists not

(3)=(1/5)2,3,,
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only of Uj;, but also of ion-electron and electron-
electron interactions, to be denoted by U{, and
U.,, respectively. For a metal, the jellium
model (a lattice of positive point ions embedded
in a uniform sea of electrons) will be used here.
This is the model used for the electrostatic en-
ergy in the pseudopotential theory of metals. '
Denoting the uniform electron density by #,

=Z(3)/9,, it follows that

Ze? 1
)‘QD SNcell

’ ’
Uje+Uge=-

nx

X ] 3! 0
2o, o ko

e? 1 4.4 s s (Y
" DA% Ve J; 43 .[, ST S
(9)
where N,,; is the number of unit cells. Changing
variables of integration leads to Uj,=—-2U,,,
and then using the I'-function definition, it fol-
lows that’®

Ule+Ule==TU

2 ( x”)

r_ =1 f ? 2

“=~ Zp O \ap) (P A+D).
(10)

Thus, the electrostatic energy density UL, for

both metallic and ionic structures may be written

2,2 , =010y 2
vt gnek [01/2 1 5 % 3“<I>_”2(°77|R (yu)! )
0

S wu A

g & - . 2 |6'(h)|2)
1 5 1 2
+0 Ec’o_ ' |S (G (h))| @0( Ao

_201/2(52>-o"—$2—(3>2] ;o (11)

remembering that (3)=0 for ionic structures. The
parameter o is a convergence parameter and is
usually chosen so that the real-lattice and recip-

rocal-lattice sums converge at about the same rate,

However, results are independent of the choice for
0.

There are two choices for the parameter A which
are of particular interest here. For A= (Qg)!/3,
all the strained-volume dependence of UL is con-
tained in the (1/9})!/? factor outside of the square
bracket in Eq. (11), and the square bracket con-
tains only volume-conserving shear dependence.
This choice is convenient for taking Fuchs-type
strain derivatives of U,,. The second choice, and
the one to be used throughout this paper, is
x=(8)°. This choice is convenient for differen-
tiating U.; with respect to the Lagrangian strain pa-
rameters,

nij':é(lethj— 6i5) , (12)

3611

where repeated indices are to be summed and 6;;
is the Kronecker §. The transformation coeffi-
cients are given by

L
= °

(13)

where X and X" are the position vectors of a mate-
rial particle in the initial and deformed states, re-
spectively. Derivatives of UL with respect to

n;; give directly the electrostatic contributions to
the Brugger-type elastic constants, which will be
discussed in Sec. III.

By performing the appropriate lattice and
reciprocal-lattice sums in Eq. (11), the electro-
static energy for any given metallic or ionic struc-
ture can be obtained, For metallic structures,
the electrostatic energy per ion is usually written
in the form

ZZ 2 Za 2
E,, (per ion)= Qo Ues= @, (—e) =a0(2 = ) , (14)
a 1’0

where a is the lattice constant and 7, is the radius
of the ionic sphere, given by + m3=Q,. Similarly
for ionic structures, the electrostatic energy per
molecule is written

2
E,, (per molecule)=2Q, U= oz,,( Zzae )

:aR<Z;e2) , (15)

where R is the nearest-neighbor distance. The «
coefficients entering in Eqs. (14) and (15) are
known as geometric coefficients when referring to
metals, and as Madelung constants when referring
to ionic structures. We have evaluated these co-
efficients for six metallic and five ionic structures
and have listed the results in Table I. For those
structures involving a ¢/a ratio, the evaluations
were performed for the case of ideal close packing
of spheres, i.e., ¢/a=1 for the simple hexagonal
structure, and ¢/a= V¥ for the hep and WC-type
structures. For the wurtzite structure, ¢/a= VE
and # =3, which gives equal bond lengths and bond
angles.

III. GENERAL EXPRESSIONS FOR BRUGGER ELASTIC
CONSTANTS

Having determined the electrostatic energy den-
sity of a deformed lattice, one can now calculate
the electrostatic contributions to the elastic con-
stants by the method of homogeneous deformation,
Since internal-strain effects may be treated sep-
arately (see Appendix A), here we will only con-
sider the case of zero internal strain, i.e., w=0.
Internal-strain contributions to the elastic con-
stants will be treated in Sec. IV, The Lagrangian
strain derivatives of UL; can be easily performed
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(see Appendix B), thus yielding the electrostatic
Brugger elastic constants

ces ;(a" Ul (1, %= o))
'J.l.c. - "-0 -
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Introducing the dimensionless parameters ¥ = R(}%)/
2472 and g=Q4/3G(r)/27, the expressions for the
first-, second-, and third-order elastic constants

are

5 =—oerry (072 (1/s) 2 - 3,8, (210)7,7; 8,1/, (on|F[?)
200 vp

+o7 ?' [S@)|2[xy; &, (0 7|E |?) - @707 g8, ®,,(07 7 [E]2)] - o (2x,} ,  (17)

2 5 g
:;u = 22?3%;{01/3 (1/3) E‘ 3 ,&“(21;0)3 ViV, 71 Pz (O"FIFIZ) +o™ Zn; Is@)lz [&.m ‘I’o(o'.l'ﬂ'lglz)

= (2170.1) Yiit @ (07 W‘§|2)+ (27"0'-1)23'(8}8'.8’1 ®,, (0.17'|§|a)] -0 (8)2)(4;"} o

and

2% ' zh
Cﬂum=—mmo {o2(1/s) 'Zi 3,3, (210) v, v, vy 77 ® 5007 | T |2)
v

(18)

+o-l Z].;' I s( E) l z[ Xllhlm Q0(0’-1 ‘”| El z) X (zwa-x)yljklm qu(c-l 1" E l g) + (21"0'-1)2 lehlm qu(a.l m l E' z)

- (2107 8,8/8:818m 8 2w 07| €|2)] =07 (32 X, ju1ma} »

where
Xi3=845, (20)

X‘lk,=6‘,6.,“"6‘*6,"”6‘,6!., (21)

Yim1=81810k1+8x8101;+ 8180 1
+8i810+ 81800 +8&10u, (22)
X iseimn =015 Xntmn+ 0ip Xjimn+ 011 Xjumn

+6lmxhun+5uXhUm ’ (23)

Yismimn = 885 Xutmn+ &1 86 Xyimn+ 81&1 X jumn+ &1 &m Xntjn
+818nXn1ym +818r Xllm+g1gl Xikmnt &1 8mXrtin
+ 85 8n Xetim+ Er &1 Xt ymn + 8 &mXijin+ &r&nXijim

+glgmxlm+glg;|XUhm+gmanuu , (24)
and

Z i jmimn= 8185 T e "gngxbm) +8r &1 (Ymu —gmgnbil)

+8m&n (Ymt ~818;6,) . (25)

It is easily seen that the coefficients X;;...,
Yijp1eeer a0d Z,5,,,, and thus the elastic constants
C33..., satisfy Cauchy relations, i.e., the order-
ing of the subscripts is immaterial. Therefore,
in general, all t! e elastic constants (through third
order) can be obtained from only two types of first-
order constants Cjj and C%%; four types of second-
order constants Cijy, Cifss, Cix, and Cifrk;
and seven types of third-order constants Cify;,

(19)

Citnsss Ciirexks Cryssaxs Crasxxxs Climixs
and C%;; ¢, Where the subscripts run from 1 to 3
with I#J#K. For these types, the elastic con-
stants with Cauchy relations have been listed in
Table II. In that table, as well as the remainder
of this paper, Voigt (reduced) notation is used for
the subscripts whenever referring to specific

TABLE I.

Geometric coefficients for six metallic

structures and Madelung constants for five ionic struc-

tures.

For metals, the electrostatic energy per ion is

ay(Z%*/a) = (2% /27,), where a is the lattice constant
and 7, is the radius of the ionic sphere. For the ionic
structures, the electrostatic energy per molecule is
a,(Z%*/a) = ag(Z%*/R), where R is the nearest-neighbor

distance.

Metallic

Qg

]

simple cubic

fee

bee

diamond

simple hexagon~l
hep

Tonic

—1.418648 7397
—2.2924310371
—1.8196167248
—2.693399 0221
—1.4978559763
—1.6209293075

Qq

—1.760118 8842
—1.791 747 2304
—1.791858 5114
—1.670 851 4055
—1,7713894740
—1.791 676 2409

QR

NaCl type

CsCl type
zinc blende

WC type
wurtzite

—3.4951291893
—2.0353615095
—3.7829261041
—1.2355856381
—2.680266 9939

—1.747 564 5946
—1.7626747731
—1.6380550534
—1.235 5856381
—1.641 321 6274
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TABLE II. General Cauchy relations for first-, second-, and third-order elastic constants. Also listed are co-
efficients used in the general expressions for the elastic constants.

Types Elastic constants with Cauchy relations
ijklmn Cij... Xijo. Yijnt--- Z iikimn
First order
n Cl! Cz, c3 1
JK Gy €isiC4 0
Second order
IIII Cil’ sz, Css 3 Sglz
JJ C1p=Cgg, C13=Cs5, Cp3=Cy 1 gi+g}
JJJK Ci5: Cigs Cag, Cag, Cyy, Css 0 38K
IIJK C14=Cs6, Ca5=Cyg, C36=Cy5 0 8I8K
Third order
mmnn Cu11s Cozps Cgs 15 45g% 15g1
mirJJd Ci12=Cigs» C113=Cs5: Ci22 =Cogs 3 6g%+3¢g} g1+6gte}
C133=C3s5: Ca23=Cou» C233=Cs3u
I1JJKK C123=C144=C255=Cgg6 =Cys¢ 1 gi+el vk gie}+eiet+abe}
JJIJIK Cu5s Ci1gs Caaas Co2g» Ca34> Cass 0 15g,8x 10¢% gx
JJJKKK Ci26=Cegggs C135=Cps5: C234=Cauma 0 988K 3¢, gx(e} +gb)
IJK C114=C156, Ca25=Caags C336=Caus 0 3gs8x 62%gs gk
TJJIK C125=C146 =Cs6> C124=Ca56=Cues 0 3grgx gr8xBg}+g%)
C134=C356=Cys5:. C136=C145=Cjss6
Cy35 =C345=Cuss Cags =Cay5=Cuse
elastic constants. For convenience, the X,,,.., are listed in Table III in units of Z%¢%/a*, where
Yinie.., and Zy,,,., coefficients, which are used a is the lattice parameter.
in Egs. (17)-(19) to determine C3;..., have also Four hexagonal structures, namely simple hex-
been listed. agonal, hcp, WC type, and wurtzite, have also been
Calculations have been completed for seven cubic considered. For these structures, the elastic
structures, namely simple cubic, fcc, bee, NaCl constants with Cauchy relations are

type, CsCl type, diamond, and zinc blende. The
first-, second-, and third-order elastic constants
with Cauchy relations for these structures are and

Ci; Cn, Cr2=Cys Cint, Caz, Ciia=Ciee=5 (—2C11+3Ca),

Ci, C3; Cy, Csy, C12=Cee=3C1, C13=Cy;

and

_ _1 B
Ci11, C112=Cyss, Cia3=Cuaa=Cusg - C122= Cas6=5(3C111 = 2Caza) »

The electrostatic contributions to these constants Cssz, Ci13=Ciss,

TABLE IIl. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z%%/a?, where «a is
the lattice constant.

simple cubic fee bee NaCl type CsCl type diamond zinc blende

U —1.418648740 —9.169724148 —3.639233450 —13.980516757 —2,035361509 —21.547192177 —15.131704 416
Cy 0.472882913 3.056574716  1.213077817 4.660172252 0.678453 836 7.182397 392 5.043901 472
Cyy —0.143189083 —6.849873626 —2.697885714 —25.108469175 2.125129382 —23.345777443 —4.053717061
Cyy —0.637729828 —1.159925261 —0.470673868 5.563 976209 —2.080 245446 0.899292633 —5.538993678
Cyyy —1.747954699 34.065579503 9.235126065 164.229593204 —16.226944863 119.055300863 17.207017149
Cyp 1.231950057 0.091894314  2,127151252 —19.343 623664 2.800648978 —1.163206824 1.530784 079
Ciz  0.724749027 5.615837678 —1.900933165  10.867 366283 4.799929272 -2.170049518  24.633400 230
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TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries
are in units of Z%?%/a’, where a is the lattice constant.

simple hexagonal
(¢/a=1)

hep
(c/a=j§':)

wC
(c/a=\73)

wurtzite
(c/a =./§I, u=%

-1.729575102
0.533 603 351
0.662 368 399

—0.605973 676

—0.401414892

—0.201991 225

—0.792845153
2.324128 642

—0.532 222756

—0,708777 482

—-1.248985111
1.607 366 288
1.954 724 848
0.651 574 949
1.357 925 970

—2.292340 210
0.764 635593
0.763069024

—1.288353922

—-1.137003 974

—0.429451308

—0.576101 549
5.026 701 204
2.217541686
5.511 268055

—0.680155470

2.129004 048

2.095223 879
0.698407 960
0.086875908

—0.873690983
—0.577163952

2.028018 888

2.966252428
—1.637033899
0.988750809
—2.223511382
—15.767553 741
—19.362925160
2.608 789547
—5.310733599
—-1.715362181
6.247025199
2.082341733

. 2.788189975

—3.790469 934
1.237 266 468
1,315936 998

—2.637875499

—3.558 546 850

—0.879291833

—0.194632072

12.580 565 280
2.779206 544
26.442 451932

—3.364702185
6.436 656 550
3.973514 399
1.324 504 800

—4,324 858 840

Ci23=Cias = C366= Cys6= 5 Cr13, Ciss=Cauy -

Electrostatic contributions to these elastic con-
stants for ideal structure parameters are listed in
Table IV in units of Z%¢®/a*. For all the hexagonal
structures, our choice of Cartesian axes (in Mil-
ler -Bravais indices) has been 1 axis=[1010]; 2
axis=[1210]; and 3 axis=[0001]. It should be
mentioned that, for the hep structure, Cousins®
has chosen basal axes rotated 90° with respect

to ours. Thus, his C;y; corresponds to our Cyp;,
etc. However, our choice of axes is consistent
with the only two sets of measured third-order
elastic constants for hep metals.*'** Also the dif-
ferent choice of axes eliminates the discrepancy,
noted by Naimon et al., in certain Fuchs’s con-
stants calculated by Cousins.*

The results presented in Tables III and IV rep-
resent a higher degree of accuracy than those of
earlier calculations. However, our results are
essentially in agreement with those reported ear-
lier (fcc, 1**° bee,~*%°® NaCl and CsCl,” zinc
blende,® and hep®). Also, all results were checked
independently by doing a Fuchs-type calculation for
each structure [Eq. (11) with x=()'%]. Other
useful checks are the relations

::= —Usss C::“= 3U,s, nljkk: = 15U,
where, as usual, repeated indices are to be sum-
med. These can be easily derived, for example,
by relating Fuchs and Brugger constants. All
calculations were performed on IBM 360 and
Xerox Sigma 5 computers. Convergence of all
sums was such that the maximum error in the
tabulated constants was +1x 1072, The subroutine

for the complementary error function, necessary
to generate the & ,,, functions, was from an IBM
routine with a relative error of less than 4x 1078,

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN
DERIVATIVES

In order to obtain the internal-strain contribu-
tion to the elastic constants, it is sufficient to

" know the energy density of the homogeneously de-

formed lattice as a function of both external and
internal strains (see Appendix A). However, since
the internal strains are determined from the total
energy density, the electrostatic internal-strain
contribution ‘to the elastic constants cannot be ob-
tained directly. It is still possible, though, to de-
termine electrostatic internal-strain derivatives
of the form

o —L G
8w, (V) 8w (1) * * * 873 ;87 =0, W=0

(26)

where W(v) is the internal strain associated with
the vth ion of the unit ccll (¥=0, 1,.+.,5~-1),
These derivatives would be combined with those
arising from other terms of the energy density,
thus resulting in the total internal-strain contri-
bution to the elastic constants.

Using the method of homogeneous deformation,
Jderivatives of Ul(7, W(r)) can be easily performed
(see Appendix B). Introducing the dimensionless
parameter {=[7(v)- 7(1)]/Q8/3, as well as
F=R(1%)/0)/°® and g= Q}/2G(r)/27, the expressions
for the electrostatic internal-strain derivatives
through third-order are
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0 = 2—Q(~{)7T i} TO) ¥Vp¥eVm ®,5/2(0m| T O) ¥ nXnpam ®+3/2 \OT | T

B 2? @, v)(2107)’ g, 2,2, Dolo 7[E[M)},

Z:e® 23,3 -
QU RO Wm) __ e (o) tm) o 3_;35 {2 ? (270) 7,7 7m®us 5 (0n|F1?)

’

= (2710)27 Xppam Ba3y2 (07| F[2)] = 02 ? (1/s) sin(27g - )(270™) £, 8,8 Bolo™ 7|E|*)}

and
QO U(V’)_ (ke)@m) _ 0

(33)

(34)

(35)

(36)

[

where v # 1 #£ and for any pomt—group operation (e.g., U| “’”*
®, R Ry, U ¥, where ® is a point- group sym-
metry element). However, for those space-group

(G, v)=5G) ST | 37)

These internal-strain derivatives are similar to operations which contain a rigid translation, e.g.,
elastic constants in that they transform as tensors screw axes or glide planes, the unit-cell label v
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also may change. An important consequence of
this is that U/%’, and thus the internal-strain
parameter

Ay 0)= (M)

My ’

=0, 7=0
need not have the same symmetry as the piezoelec-
tric tensor. An example of this is seen later when
considering the wurtzite structure. Also, itis
easily seen that these electrostatic derivatives
obey the following relations: U/, U “%,

U %), and U@ “0¢m gatisfy Cauchy relations

in that the Cartesian indices can be arranged in
any order (e.g., U’ =U¥P); and U %2 is
symmetric with respect to the interchanges p—g¢
and i~ j.

Because the energy density depends on relative
interlattice displacements, only s —1of the s in-
ternal strains W(v) are independent.'” Thus, one
may choose any independent set of internal strains
w* (@=1,...,s—1), which are linear combinations
of the w(v),

2 3 o=
w“=ﬁa‘,,w @) .
v=0

Then, derivatives are related by

9 S 9
oI P
daw) . “ow

Internal strains only occur in nonprimitive lat-
tices with ions not at centers of symmetry. Thus,
of the 11 structures considered earlier, only five
(diamond, zinc blende, hcp, WC, and wurtzite)
can have an internal-strain contribution to the
elastic constants. Because the diamond and zinc-
blende lattices differ only in the sign of the ionic
charges, they may be considered together. The
same applies for the hcp and WC lattices. How-
ever, since the wurtzite structure consists of two
interpenetrating hep sublattices, the hep and WC
structures can be obtained from wurtzite by a
suitable choice of charges. Thus, it is convenient
to consider hep and WC with wurtzite.

The zinc-blende and diamond structures have a
fcc Bravais lattice with basis vectors 7(0)= (0, 0, 0)
and 7(1)=(a)(1,1,1). To form the two structures,
the signs of the charges in the unit cell are chosen
as 3o=+1 and 3,=- 1(+1) for the ionic zinc-blende
(metallic diamond) structure. For structures with
two ions per unit cell, there is only one indepen-
dent internal strain. Here it has been chosen as

=[W(1)-w(0)]/Ca),

and thus

) 9 9
_— :i—a ==z =

ow, *" ow,(1) ow,(0) *
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Then, the independent electrostatic internal-strain
derivatives for zinc blende with Cauchy relations
are

Ul=-10.057668147, U;i'=0.819616921,
U= -4.188790205, U3'=10.062167052,
U =19.202879707, UZ =14.250957256,
Ul=U}l=Uls=16.762780245 ,

in units of Z%¢%/a*. (The notation used here is that
of Appendix A, with Voigt notation used for all
subscripts.) Since the electrostatic internal-strain
derivatives are proportional to 343, for structures
with two ions per unit cell, the results for the «
diamond structure are negative those of zinc
blende.

The hcp, WC, and wurtzite structures have a
simple hexagonal Bravais lattice with basis vec-
tors

?(0)7- (0, 0, O), ?(1) == (a/ﬁ, 0, %C) ’
7(2)=(0,0,uc), 7(3)=(a/V3,0,[u+}]c)

referred to the Cartesian axes. The three struc-
tures can be formed by choosing the signs of the
charges in the unit cell as follows: For metallic
hep (ionic WC) 39=+1, 3,=+1(=1), and 3,=3;=0;
and for ionic wurtzite 3,=3,=+1 and 3,=33=—1.
The three independent internal strains will be
taken as

w'=[W)-FO)]/L, F=[F#E)-F)]/L,
and
W= [W(2)-%O)/L ,

where L =aVv3. The internal strains w! and w2
represent the interlattice displacement in the two
hep sublattices, while w® is an interlattice dis-
placement between the two hep sublattices. Then,
internal-strain derivatives are taken according to

E] _L( ] ) 3. g8 )
ow, \ow, (1))’ vy~ \ow,(3)

and

s~ H(%2) bmm)
:-L[(ﬁjﬁﬁ}%)] ]

1t is easily seen that derivatives with respect to vzvz
and w® are zero for hep and WC, since internal-
strain derivatives with respect to w(v) are propor-
tional to 3,. Therefore, for these two structures,
the internal-strain label will be omitted and under-
stood to be a=1. The electrostatic internal-strain
derivatives for ideal hcp with Cauchy relations are
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Ui=0.212757375 ,
11-0, 215120910 ,

U®=4.282147161 ,

U= -1,206443870,  U3® = - 10. 800694409

Ut=0.014231968 , U3*= - 5.520141607 ,

U= 3(Ui' - U3')= - 0. 066962980 ,

Ul =0.010837123 ,

Upe= Ulg= - 2 Ul = - 0, 006502274 ,

Uly= U= — + Ul = - 0. 002167425

Uly= - Ul,= U= - 1. 072456573

U3=0.148157929
Uy'= - 1.237994447
U= -5.305020698 ,

in units of Z%?%/a*. As was the case for the dia-
mond and zinc-blende structures, the results for
the WC-type structure are negative those of hcp.
For the wurtzite structure, all three internal
strains must be considered. Instead of using the
internal-strain labels a, B,... on U#f®’"" when
writing specific derivatives, it is convenient to
use commas to separate differentiations with re-
spect to the three different internal strains. Then
GRS Bt UL,
s = (81,?;- - aﬁf. YT

The indices before the first comma represent de-
rivatives with respect to Cartesian components of
w'; those between commas represent derivatives
with respectto components of #?; and those after
the second comma represent derivatives with re-
spect to components of w®. For example,

Ul..l:i:( a’u )
91 9y OW3 Jy-o, Fa-0

and

3
U3,1,1:( _8Ues _) '
Ow3 dw1 8w /5.0, Fa=0

Then, the electrostatic internal-strain derivatives
for ideal wurtzite with Cauchy relations are

Ud= - 2U0% =20°%= - 0. 048542322 ,
Upt=-20pr=203"

= U= 203 = 20;% = 3. 425042335 ,
Uy®= - 20U =2U3%= - 6. 704457705 ,
Ul =ujt = - 2.335388332

Urtt=_2putt=2p1= - 6,130547391 |

yttr=priti- _ 2 850152786 , U= -
Ur¥=_20%%=-20%3=-_6. 588461139 ,

U =¥ =0,987916591 , U =6. 971628768 ,

M LI ')‘:f:o, Fa=0

1.129619894 ,

U398 _ g 3880 _ g 0333 _ g 3943 _ 9 77383

-2 US' 33 _ =9 U.S 33 _ -2 U,.us 4 UllS,,

C 4V g3 gl gt
c 4o gyt g3t
=-40"13-179, 550922034 ,

U3 o _ 38 - _ 88 _ g il _ o /81,

=2 U =g ' = gt g gt
=20"*1-13, 883995989 ,

pitte - ot - 27750835335
pteoto _peitels gttt _ el L 28, 9572179205
Uil = Ut = 14, 882310616 , Uj'''=0.659437674
Upt- —2ubt= 2u; = 29, 736157294 |
Ut = Uyt = 3, 060668348 , 0.533267371 ,
Uyt=—2vuit=203M" = 5. 825020837 ,
Ut = Ut = - 3,692215035 , Ujy''=5.521929167 ,
Upytt= 20 1= 203 = — 4, 908441176 |
U= U3 - 7. 530284412, U = - 2. 579319495
Up®= - 20d 3= 20;>%= - 4. 450527428 ,
U = U5 =10.120985868 , US'™ = — 29. 699504851
Uy¥®=-20%%=20;%%= 41, 843360553 ,
U= U = - 4.680131626

Uit = -

U% = Up? = - 1.449699601 ,
TP 2= < gt
=2U%=20U;%=1.680019963 ,
Ut = Ugl% = (U - U3'*)= 5. 910821134 ,
ULz = Ubt = J(UbY - UYY)= 0. 596352523
Uyt = 204 < 20 2T 2= 20
=4 - Uy™)=11. 955568228
Uélu & s Ug“' o Ué"‘ U'l Ula,, __ Uils.
= - U= _ U3l _Upted= - U = 6. 812479538
Uiy’ = Ujl' = 13. 899872705
=Up'=Uly = Upd = - $ Ui’ = - 8. 339923623 ,
= Uiy = Uy = Uiy = - $ Ul = - 2. 779974541 ,
U"' Uiy =-Uly = - Uiy = Uy = Ujd = 0. 557043495 |
Ui'=-2U =20
=Ujj’=-2U3 =2U; = - 12. 050251035 ,

Upt'=- 205 =2 U= Uiy = - 2V’ = 2 Uje’
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=Ujs’=-2U%y =2U} = U’ = - 2 Ugy’
=2 U =3 Ujs'= - 4. 016750345
Ugs'=- 2U3y = 203y = Uyy’= - 203y = 2033 = Uy
= - 2U3y = 2U3 = - 1. 058210294 ,
Uyl= - 2U3 = 2U33 = 35. 638709114

in units of z%?%/a*.

The space group of wurtzite contains a screw
axis (a twofold rotation about the three axis and a
translation by 3c). For this symmetry element,
the internal-strain tensors Ujj> %" transform as

Ugt) (RH(RII é;&q) o ’
where ® is the twofold rotation matrix. As a re-
sult of the translation, the unit-cell labels (u—v)
change according to 0-1,1-0,2- 3, and 3~ 2.
For example, this symmetry requires that

U!(OI)= — U{ll) and Uizl)z i

Thus, U}'=LU{! and Uj"=LU{" are not required
to vanish. However, Uy'=L[U{?"; U{*"]is required
to be zero. It should be noted that if the components
of a tensor are unaffected by the translation, then
any component with an odd number of 1’s or 2’s,
but not both, is required to vanish (e.g., the 111
component of the piezoelectric tensor).

(31)
Uy .
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APPENDIX A: INTERNAL-STRAIN CONTRIBUTION TO
BRUGGER-TYPE ELASTIC CONSTANTS

For nonprimitive lattices with ions not at cen-
ters of symmetry, macroscopic strains in general
give rise to internal strains, i.e., interlattice dis-
placements. With s ions per unit cell, only s -1
internal strains are independent. 1 For convenience,
they will be labeled here as W*, where a=1,2,...,
s —1. These internal strains, which are functions
of the external strain n;;, are determined by re-
quiring that the total energy density of the homo-
geneously deformed state, U(T ,W%), be a minimum
with respect to W* T

alu
oy

Denoting derivatives of U(7 ,%*) by

)3=0 (p=1,2,3) . (A1)

— a"uU
yephasss = (_
Wopdrind Wo W oo B 0Ny

e
A= IR

(A2)

the strain dependence of ¥ can be determined by
differentiating Eq. (Al) with respect to 7;;. Thus,

9 U 9 (U“):U"-!-

0= —— =
on;; owbs ~ any

aws
—— b porh A3
My W

and

0=.L(

aw?
G Lo
M9k

yerta
Y aMy;

ows
an) . Ug’kl = Bﬂ:,
dw, dw,
oMy My
where repeated indices (including superscripts) are
to be summed.
In general, wj can be expanded in a Taylor series
of TIu ’

84w
plarr , b [robt

. A4
9750y, )

Wy = Ay Mig+5 Bpiju Mig M + (A5)

where the coefficients
aw?
e ()
PNy ) 50

and
a2w?

« 1
Boui= (877113771.1 )‘ﬂ-o

are determined from Eqs. (A3) and (A4), respec-
tively. Higher-order coefficients are similarly ob-
tained by successive differentiation. However,
knowing U as a function of W* and 7, only the in-
ternal-strain parameters Aj;; are needed to obtain
Bji;: and all higher-order coefficients, e.g., Eq.
(A4) relates By, to the coefficients Ay;; and de-
rivatives of U.

Using the definition of the Brugger elastic con-
stants, 18

(AB)

(A7)

Cijrtee (A8)

- (LU
CURTEL IR $e0
and Eqs. (Al), (A3), and (A4), it follows that

Cy=C , (A9)

Cuni=Cim~Agy AL U (7 =0) , (A10)

and
Ci}klmn Cuklmn +ANI U:l’mn (T = 0) +Abhl llnm (77 0)

+ AL Uil (7 =0) +Ag AL, UG (T =0)

+Aﬁij qan:’Bc(‘. 0)+A th U::&(.-’ 0)

+AAG Al UXPR (T =0) , (Al1)

e = U“k;...("’-'l’:o): (

8"U(m ,w*=0) )
=0

oM Mgy ...

(A12)
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Thus, the internal-strain contributions to the elastic where
cctnstants can be considered separately, and the el iz risdp
C{9... are the Brugger elastic constants in the ab-
sence of internal strains. GO | sk plits R

To illustrate the use of these equations, specific.
results for several structures are given below.
Voigt (reduced) notation is used for all subscripts.

Also, for those structures with two ions per unit cell

and thus only one independent internal strain, the
superscript @ =1 is omitted.

For the zinc-blende (or diamond) structure, Eqgs.
(A10) and (A11) reduce to

Cpu=CY, Clz_—_bcl(g)y Cou=CR - UM A%,
Cisi=C8l, Cu=C8), Cue=Cl)
Ciu=Cii-2UL A+ U A%,

Ciss=Cll = 2UL A+ UL A,
Cuss=Cia-3UL A+ 3UP A2 - U'B A® |

where the internal-strain parameter, as de-
termined from Eq. (A3) is

U wey

ow, _ dw,
U T ey amyy Ty,
The results for the hep (or WC) structure are
Cy=C{y -U" A%, Cy,=C+U"A%,
Cis=Ci3', Cy3= cs, Cu=C ;
Cinn= Cﬂ){+3U}1A+3Ui1Az+ Utig®
Cipz=Ci3s— (UYL, + Upp) A= (2UY' - U') A* - UMM A® |
Cooa=C9) - 3ULA+3U A2 - UM A3
Ciug=CRL+ 203, A 4 TP AR,

C123 = Cfgé" ZUisA o UélAa )
Cig= 0{23 o U;4 A, Cy5= cl(g; - Ui4A ’
Cigs= C{g;, Cyss= C;g; ’ Caag= Cégi ’
where
Ui _ ew, owy, __ dws

A=~ —r = == = —
U U Mgz CLIP

For the wurtzite structure, which has three in-
dependent internal strains, complete results will
not be given. However, we will indicate how the
internal-strain parameters are obtained from Eq.
(A3) for this structure, Since U**" is nonzero
only if p=¢, Eq. (A3) becomes

%y AL, ==UY

a=1

where there are no implied sums over repeated in-
dices. Then

3
pij== le (wh»*u?

U1P3P UZP” U393P

APPENDIX B. METHOD OF HOMOGENEOUS
DEFORMATION

For a homogeneous deformation of a lattice,
i.e., a deformation where the resulting structure
remains a perfect lattice, the lattice vectors and
basis vectors deform according to

R{(1)=d,; R;(1) (B1)
and

TiW)=dy,; ;) +w, ), (B2)
respectively. Or equivalently,

Ri() =7, R,() +w,(v) , (B3)

where w (v) is the internal strain or interlattice
displacement of the vth sublattice. Asis commonly
done, the internal-strain vector is redefined as'

wy(v)=dJ; w;(v), (B4)

so that the strain energy is in a form invariant
with respect torigidrotations. Then the lattice vec-
tors R(}}) deform according to

RiGE)=dyy RyGE) + (I )y w0 m) (B5)
where
W, ) =w, ) =, (1) . (B6)

Since the deformed reciprocal lattice is the recip-
rocal lattice of the deformed real lattice, the re-
ciprocal-lattice vectors deform according to

Gi(r)=(J 1), G,(n) . (B7)
Volumes deform according to
Qh/Qg=det|J| . (B8)

In the expression for U, [Eq. (11)] the only
variables which depend on deformation are | RN,
IG'(h)I% €4, and §’(G’), the last of which is a
function of G'(k)-7'(v). Using the definition of the
Langrangian strain parameter 7n,;, it is easily
shown that

lﬁ’(£3)| zzMuRt(-"B)RJ(:S)"ZE)i(V#)Ri(m)

+(M N wpw)w,p) ,  (B9)
|G ()|2= ("), G,(m) G, (h) , (B10)
and
G ()7 w)=Cn)-T0)+M ™), ,0)G,(),
(B11)
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where
Mgy =2n+8;=dndy . (B12)

Equations (B8)-(B11) can readily be differentiated
with respect to 7,, by making use of the relations

—— (det|J|)=det|J| (M), , (B13)

]
T (Mg)=8;5655+ 84305 , (B14)

and
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- W (M-’)u—(M-l)u (Md)n'*-(M—l)u(M- )n

(B15)
(Note that functions of 7;; have been symmetrized
before differentiation. ) Using Eqs. (B8)-(B15)
and the relations

Bolx)=e*/x, B 5x)=(n/x)""? erfc(x'’?),

and

-dd,(x)
dx

it is strai _§htforward to differentiate UL with re-
spect to 7 and w(v).

- ‘I’ml(x)':q’o(x)"’ .M!.(x_)
x
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